PROBLEM

If A > 0, B > 0, and $A + B = \frac{\pi}{3}$, then the maximum value of tan A tan B is **a.** $\frac{1}{\sqrt{3}}$ **b.** $\frac{1}{3}$ **c.** 3 **d.** $\sqrt{3}$

SOLUTION

b. Given
$$A + B = 60^{\circ}$$
 or $B = 60^{\circ} - A$

:
$$\tan B = \tan (60^\circ - A) = \frac{\sqrt{3} - \tan A}{1 + \sqrt{3} \tan A}$$

Now $z = \tan A \tan B$

or
$$z = \frac{t(\sqrt{3}-t)}{1+\sqrt{3}t} = \frac{\sqrt{3}t-t^2}{1+\sqrt{3}t}$$

where $t = \tan A$

$$\frac{dz}{dt} = -\frac{(t+\sqrt{3})(\sqrt{3}t-1)}{(1+\sqrt{3}t)^2} = 0$$

or $t = 1/\sqrt{3}$

or
$$t = \tan A = \tan 30^\circ$$

The other value is rejected as both A and B are +ve acute angles.

If
$$t < \frac{1}{\sqrt{3}}$$
, $\frac{dz}{dt}$ is positive and if $t > \frac{1}{\sqrt{3}}$, $\frac{dz}{dt}$ is negative.
Hence maximum when $t = \frac{1}{dt}$ and maximum value = $\frac{1}{dt}$

77. 4